{ "id": "2007.07034", "version": "v1", "published": "2020-07-14T13:44:38.000Z", "updated": "2020-07-14T13:44:38.000Z", "title": "The Landis conjecture on exponential decay", "authors": [ "A. Logunov", "E. Malinnikova", "N. Nadirashvili", "F. Nazarov" ], "categories": [ "math.AP", "math-ph", "math.CA", "math.MP" ], "abstract": "Consider a solution $u$ to $\\Delta u +Vu=0$ on $\\mathbb{R}^2$, where $V$ is real-valued, measurable and $|V|\\leq 1$. If $|u(x)| \\leq \\exp(-C |x| \\log^{1/2}|x|)$, $|x|>2$, where $C$ is a sufficiently large absolute constant, then $u\\equiv 0$.", "revisions": [ { "version": "v1", "updated": "2020-07-14T13:44:38.000Z" } ], "analyses": { "keywords": [ "exponential decay", "landis conjecture", "sufficiently large absolute constant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }