{ "id": "2007.05862", "version": "v1", "published": "2020-07-11T22:06:52.000Z", "updated": "2020-07-11T22:06:52.000Z", "title": "A Dobrushin-Lanford-Ruelle theorem for irreducible sofic shifts", "authors": [ "LuĂ­sa Borsato", "Sophie MacDonald" ], "comment": "14 pages, 1 diagram", "categories": [ "math.DS" ], "abstract": "We show that for a potential with summable variations on an irreducible sofic shift in one dimension, the equilibrium measures are precisely the shift-invariant Gibbs measures. The main tool in the proof is a preservation of Gibbsianness result for almost invertible factor codes on irreducible shifts of finite type, which we then extend to finite-to-one codes by applying the results about equilibrium measures.", "revisions": [ { "version": "v1", "updated": "2020-07-11T22:06:52.000Z" } ], "analyses": { "subjects": [ "37D35", "37B10" ], "keywords": [ "irreducible sofic shift", "dobrushin-lanford-ruelle theorem", "equilibrium measures", "shift-invariant gibbs measures", "invertible factor codes" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }