{ "id": "2007.05818", "version": "v1", "published": "2020-07-11T17:47:36.000Z", "updated": "2020-07-11T17:47:36.000Z", "title": "On a rationality problem for fields of cross-ratios II", "authors": [ "Tran-Trung Nghiem", "Zinovy Reichstein" ], "comment": "9 pages", "categories": [ "math.AG", "math.AC", "math.GR" ], "abstract": "Let $k$ be a field, $x_1, \\dots, x_n$ be independent variables and $L_n = k(x_1, \\dots, x_n)$. The symmetric group $\\Sigma_n$ acts on $L_n$ by permuting the variables, and the projective linear group $\\text{PGL}_2$ acts by \\[ \\begin{pmatrix} a & b \\\\ c & d \\end{pmatrix} \\colon x_i \\mapsto \\frac{a x_i + b}{c x_i + d} \\] for each $i = 1, \\ldots, n$. The fixed field $L_n^{\\text{PGL}_2}$ is called \"the field of cross-ratios\". Given a subgroup $S \\subset \\Sigma_n$, H. Tsunogai asked whether $L_n^S$ rational over $K_n^S$. When $n \\geqslant 5$ the second author has shown that $L_n^S$ is rational over $K_n^S$ if and only if $S$ has an orbit of odd order in $\\{ 1, \\dots, n \\}$. In this paper we answer Tsunogai's question for $n \\leqslant 4$.", "revisions": [ { "version": "v1", "updated": "2020-07-11T17:47:36.000Z" } ], "analyses": { "subjects": [ "14E08" ], "keywords": [ "rationality problem", "cross-ratios", "answer tsunogais question", "symmetric group", "independent variables" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }