{ "id": "2007.05043", "version": "v1", "published": "2020-07-09T19:33:12.000Z", "updated": "2020-07-09T19:33:12.000Z", "title": "Subconvexity bound for $GL(3) \\times GL(2)$ $L$-functions in $GL(2)$ spectral aspect", "authors": [ "Sumit Kumar" ], "categories": [ "math.NT" ], "abstract": "Let $\\pi$ be a Hecke-Maass cusp form for $SL(3, \\mathbb{Z})$ and $f$ be a holomorphic cusp form with weight $k$ or Hecke-Maass cusp form corresponding to the Laplacian eigenvalue $1/4+k^2$, $k\\geq 1$ for $SL(2,\\mathbb{Z})$. In this paper, we prove the following subconvexity bound: L\\left(\\frac{1}{2}, \\pi \\times f\\right) \\ll_{\\pi,\\epsilon} k^{\\frac{3}{2}-\\frac{1}{51}+\\epsilon}, for the central values $L(1/2,\\pi \\times f)$ of the Rankin-Selberg $L$-function of $\\pi$ and $f$. Using the same method, by taking $\\pi$ to be the Eisenstein series, we also obtain the following subconvexity bound: L\\left( \\frac{1}{2},\\ f\\right) \\ll_{\\epsilon} k^{\\frac{1}{2}-\\frac{1}{153}+\\epsilon}.", "revisions": [ { "version": "v1", "updated": "2020-07-09T19:33:12.000Z" } ], "analyses": { "keywords": [ "subconvexity bound", "spectral aspect", "holomorphic cusp form", "hecke-maass cusp form corresponding", "laplacian eigenvalue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }