{ "id": "2007.04895", "version": "v1", "published": "2020-07-08T08:32:10.000Z", "updated": "2020-07-08T08:32:10.000Z", "title": "Asymptotic lower bounds for Gallai-Ramsey functions and numbers", "authors": [ "Zhao Wang", "Yaping Mao", "Hengzhe Li", "Suping Cui" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "For two graphs $G,H$ and a positive integer $k$, the \\emph{Gallai-Ramsey number} ${\\rm gr}_k(G,H)$ is defined as the minimum number of vertices $n$ such that any $k$-edge-coloring of $K_n$ contains either a rainbow (all different colored) copy of $G$ or a monochromatic copy of $H$. If $G$ and $H$ are both complete graphs, then we call it \\emph{Gallai-Ramsey function} ${\\rm GR}_k(s,t)$, which is the minimum number of vertices $n$ such that any $k$-edge-coloring of $K_n$ contains either a rainbow copy of $K_s$ or a monochromatic copy of $K_t$. In this paper, we derive some lower bounds for Gallai-Ramsey functions and numbers by Lov\\'{o}sz Local Lemma.", "revisions": [ { "version": "v1", "updated": "2020-07-08T08:32:10.000Z" } ], "analyses": { "keywords": [ "asymptotic lower bounds", "gallai-ramsey functions", "minimum number", "monochromatic copy", "local lemma" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }