{ "id": "2007.04757", "version": "v1", "published": "2020-07-09T13:06:10.000Z", "updated": "2020-07-09T13:06:10.000Z", "title": "The local Poincaré problem for irreducible branches", "authors": [ "José Cano", "Pedro Fortuny Ayuso", "Javier Ribón" ], "comment": "18 pages, 5 figures, accepted for publication in Revista Matem\\'atica Iberoamericana", "categories": [ "math.AG", "math.CA", "math.CV", "math.DS" ], "abstract": "Let ${\\mathcal F}$ be a germ of holomorphic foliation defined in a neighborhood of the origin of ${\\mathbb C}^{2}$ that has a germ of irreducible holomorphic invariant curve $\\gamma$. We provide a lower bound for the vanishing multiplicity of ${\\mathcal F}$ at the origin in terms of the equisingularity class of $\\gamma$. Moreover, we show that such a lower bound is sharp. Finally, we characterize the types of dicritical singularities for which the multiplicity of $\\mathcal{F}$ can be bounded in terms of that of $\\gamma$ and provide an explicit bound in this case.", "revisions": [ { "version": "v1", "updated": "2020-07-09T13:06:10.000Z" } ], "analyses": { "subjects": [ "32S05", "32S65", "14H20" ], "keywords": [ "irreducible branches", "lower bound", "irreducible holomorphic invariant curve", "equisingularity class", "multiplicity" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }