{ "id": "2007.04580", "version": "v1", "published": "2020-07-09T06:40:33.000Z", "updated": "2020-07-09T06:40:33.000Z", "title": "New properties of the multivariable $H^\\infty$ functional calculus of sectorial operators", "authors": [ "Olivier Arrigoni", "Christian Le Merdy" ], "categories": [ "math.FA" ], "abstract": "This paper is devoted to the multivariable $H^\\infty$ functional calculus associated with a finite commuting family of sectorial operators on Banach space. First we prove that if $(A_1,\\ldots, A_d)$ is such a family, if $A_k$ is $R$-sectorial of $R$-type $\\omega_k\\in(0,\\pi)$, $k=1,\\ldots,d$, and if $(A_1,\\ldots, A_d)$ admits a bounded $H^\\infty(\\Sigma_{\\theta_1}\\times \\cdots\\times\\Sigma_{\\theta_d})$ joint functional calculus for some $\\theta_k\\in (\\omega_k,\\pi)$, then it admits a bounded $H^\\infty(\\Sigma_{\\theta_1}\\times \\cdots\\times\\Sigma_{\\theta_d})$ joint functional calculus for all $\\theta_k\\in (\\omega_k,\\pi)$, $k=1,\\ldots,d$. Second we introduce square functions adapted to the multivariable case and extend to this setting some of the well-known one-variable results relating the boundedness of $H^\\infty$ functional calculus to square function estimates. Third, on $K$-convex reflexive spaces, we establish sharp dilation properties for $d$-tuples $(A_1,\\ldots, A_d)$ which admit a bounded $H^\\infty(\\Sigma_{\\theta_1}\\times \\cdots\\times\\Sigma_{\\theta_d})$ joint functional calculus for some $\\theta_k<\\frac{\\pi}{2}$.", "revisions": [ { "version": "v1", "updated": "2020-07-09T06:40:33.000Z" } ], "analyses": { "subjects": [ "47A60", "47A20", "47D03" ], "keywords": [ "sectorial operators", "joint functional calculus", "multivariable", "establish sharp dilation properties", "square function estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }