{ "id": "2007.04479", "version": "v1", "published": "2020-07-08T23:57:39.000Z", "updated": "2020-07-08T23:57:39.000Z", "title": "Signless Laplacian spectral radius and matching in graphs", "authors": [ "Chang Liu", "Yingui Pan", "Jianping Li" ], "categories": [ "math.CO" ], "abstract": "The signless Laplacian matrix of a graph $G$ is given by $Q(G)=D(G)+A(G)$, where $D(G)$ is a diagonal matrix of vertex degrees and $A(G)$ is the adjacency matrix. The largest eigenvalue of $Q(G)$ is called the signless Laplacian spectral radius, denoted by $q_1=q_1(G)$. In this paper, some properties between the signless Laplacian spectral radius and perfect matching in graphs are establish. Let $r(n)$ be the largest root of equation $x^3-(3n-7)x^2+n(2n-7)x-2(n^2-7n+12)=0$. We show that $G$ has a perfect matching for $n=4$ or $n\\geq10$, if $q_1(G)>r(n)$, and for $n=6$ or $n=8$, if $q_1(G)>4+2\\sqrt{3}$ or $q_1(G)>6+2\\sqrt{6}$ respectively, where $n$ is a positive even integer number. Moreover, there exists graphs $K_{n-3}\\vee K_1 \\vee \\overline{K_2}$ such that $q_1(K_{n-3}\\vee K_1 \\vee \\overline{K_2})=r(n)$ if $n\\geq4$, a graph $K_2\\vee\\overline{K_4}$ such that $q_1(K_2\\vee\\overline{K_4})=4+2\\sqrt{3}$ and a graph $K_3\\vee\\overline{K_5}$ such that $q_1(K_3\\vee\\overline{K_5})=6+2\\sqrt{6}$. These graphs all have no prefect matching.", "revisions": [ { "version": "v1", "updated": "2020-07-08T23:57:39.000Z" } ], "analyses": { "subjects": [ "05C50", "05C70" ], "keywords": [ "signless laplacian spectral radius", "vertex degrees", "signless laplacian matrix", "integer number", "diagonal matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }