{ "id": "2007.04351", "version": "v1", "published": "2020-07-08T18:12:11.000Z", "updated": "2020-07-08T18:12:11.000Z", "title": "Tuza's Conjecture for random graphs", "authors": [ "Jeff Kahn", "Jinyoung Park" ], "comment": "13 pages including references and appendix, 1 figure", "categories": [ "math.CO" ], "abstract": "A celebrated conjecture of Zs. Tuza says that in any (finite) graph, the minimum size of a cover of triangles by edges is at most twice the maximum size of a set of edge-disjoint triangles. Resolving a recent question of Bennett, Dudek, and Zerbib, we show that this is true for random graphs; more precisely: \\[ \\mbox{for any $p=p(n)$, $\\mathbb P(\\mbox{$G_{n,p}$ satisfies Tuza's Conjecture})\\rightarrow 1 $ (as $n\\rightarrow\\infty$).} \\]", "revisions": [ { "version": "v1", "updated": "2020-07-08T18:12:11.000Z" } ], "analyses": { "keywords": [ "random graphs", "tuzas conjecture", "tuza says", "edge-disjoint triangles", "celebrated conjecture" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }