{ "id": "2007.04147", "version": "v1", "published": "2020-07-08T14:19:48.000Z", "updated": "2020-07-08T14:19:48.000Z", "title": "Error estimates of hybridizable interior penalty methods using a variable penalty for highly anisotropic diffusion problems", "authors": [ "Gregory Etangsale", "Marwan Fahs", "Vincent Fontaine", "Nalitiana Rajaonison" ], "categories": [ "math.NA", "cs.NA" ], "abstract": "In this paper, we derive improved a priori error estimates for families of hybridizable interior penalty discontinuous Galerkin (H-IP) methods using a variable penalty for second-order elliptic problems. The strategy is to use a penalization function of the form $\\mathcal{O}(1/h^{1+\\delta})$, where $h$ denotes the mesh size and $\\delta$ is a user-dependent parameter. We then quantify its direct impact on the convergence analysis, namely, the (strong) consistency, discrete coercivity and boundedness (with $h^{\\delta}$-dependency), and we derive updated error estimates for both discrete energy- and $L^{2}$-norms. All theoretical results are supported by numerical evidence.", "revisions": [ { "version": "v1", "updated": "2020-07-08T14:19:48.000Z" } ], "analyses": { "subjects": [ "65N12", "65N15", "65N30", "65N38" ], "keywords": [ "hybridizable interior penalty methods", "highly anisotropic diffusion problems", "error estimates", "variable penalty", "interior penalty discontinuous galerkin" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }