{ "id": "2007.03984", "version": "v1", "published": "2020-07-08T09:40:54.000Z", "updated": "2020-07-08T09:40:54.000Z", "title": "Asymptotics of the number of 2-threshold functions", "authors": [ "Elena Zamaraeva", "Jovisa Zunic" ], "comment": "25 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "A $k$-threshold function over a two-dimensional rectangular grid $\\mathcal{G}_{m,n} = \\{0,\\dots,m-1\\} \\times \\{0,\\dots,n-1\\}$ is the conjunction of $k$ linear threshold functions over the same domain. In this paper we focus on the case $k=2$ and show that the number of 2-threshold functions defined on $\\mathcal{G}_{m,n}$ is $\\dfrac{25}{12\\pi^4} m^4 n^4 + o(m^4n^4)$.", "revisions": [ { "version": "v1", "updated": "2020-07-08T09:40:54.000Z" } ], "analyses": { "subjects": [ "03B50", "05A18", "52C05", "11P21", "G.2.1" ], "keywords": [ "asymptotics", "linear threshold functions", "two-dimensional rectangular grid", "conjunction" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }