{ "id": "2007.03060", "version": "v1", "published": "2020-07-06T20:55:57.000Z", "updated": "2020-07-06T20:55:57.000Z", "title": "Perverse sheaves and finite-dimensional algebras", "authors": [ "Alessio Cipriani", "Jon Woolf" ], "comment": "11 pages", "categories": [ "math.RT", "math.AT" ], "abstract": "Let $X$ be a topologically stratified space, $p$ be any perversity on $X$, and $k$ be a field. We show that the category of $p$-perverse sheaves on $X$, constructible with respect to the stratification and with coefficients in $k$, is equivalent to the category of finite-dimensional modules over a finite-dimensional algebra if and only if $X$ has finitely many strata and the same holds for the category of local systems on each of these. The main component in the proof is a construction of projective covers for simple perverse sheaves.", "revisions": [ { "version": "v1", "updated": "2020-07-06T20:55:57.000Z" } ], "analyses": { "subjects": [ "18G80", "55N33" ], "keywords": [ "finite-dimensional algebra", "simple perverse sheaves", "finite-dimensional modules", "local systems", "main component" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }