{ "id": "2007.03043", "version": "v1", "published": "2020-07-06T20:10:00.000Z", "updated": "2020-07-06T20:10:00.000Z", "title": "Criterion for the functional dissipativity of second order differential operators with complex coefficients", "authors": [ "Alberto Cialdea", "Vladimir Maz'ya" ], "categories": [ "math.AP" ], "abstract": "In the present paper we consider the Dirichlet problem for the second order differential operator $E=\\nabla(A \\nabla)$,where $A$ is a matrix with complex valued $L^\\infty$ entries. We introduce the concept of dissipativity of $E$ with respect to a given function $\\varphi:R^+ \\to R^+$. Under the assumption that the $Im\\, A$ is symmetric, we prove that the condition $|s\\, \\varphi'(s)| \\, | \\langle Im\\, A (x)\\, \\xi,\\xi\\rangle |\\leq 2\\, \\sqrt{\\varphi(s)\\, [s\\, \\varphi(s)]'}\\, \\langle Re\\, A(x) \\, \\xi,\\xi\\rangle $ (for almost every $x\\in\\Omega\\subset R^N$ and for any $s>0$, $\\xi\\in R^N$) is necessary and sufficient for the functional dissipativity of $E$.", "revisions": [ { "version": "v1", "updated": "2020-07-06T20:10:00.000Z" } ], "analyses": { "subjects": [ "47B44", "35L30" ], "keywords": [ "second order differential operator", "functional dissipativity", "complex coefficients", "dirichlet problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }