{ "id": "2007.02524", "version": "v1", "published": "2020-07-06T05:00:58.000Z", "updated": "2020-07-06T05:00:58.000Z", "title": "The moduli space of stable rank 2 parabolic bundles over an elliptic curve with 3 marked points", "authors": [ "David Boozer" ], "comment": "6 pages", "categories": [ "math.AG", "math.GT", "math.SG" ], "abstract": "We explicitly describe the moduli space $M^s(X,3)$ of stable rank 2 parabolic bundles over an elliptic curve $X$ with trivial determinant bundle and 3 marked points. Specifically, we exhibit $M^s(X,3)$ as a blow-up of an embedded elliptic curve in $(\\mathbb{CP}^1)^3$. The moduli space $M^s(X,3)$ can also be interpreted as the $SU(2)$ character variety of the 3-punctured torus. Our description of $M^s(X,3)$ reproduces the known Poincar\\'{e} polynomial for this space.", "revisions": [ { "version": "v1", "updated": "2020-07-06T05:00:58.000Z" } ], "analyses": { "subjects": [ "14H60", "14H52" ], "keywords": [ "moduli space", "parabolic bundles", "stable rank", "marked points", "trivial determinant bundle" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }