{ "id": "2007.02401", "version": "v1", "published": "2020-07-05T18:02:03.000Z", "updated": "2020-07-05T18:02:03.000Z", "title": "Graded Betti numbers of some circulant graphs", "authors": [ "Sonica Anand", "Amit Roy" ], "comment": "20 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "Let $G$ be the circulant graph $C_n(S)$ with $S \\subseteq \\{1, 2, \\dots, \\lfloor \\frac{n}{2} \\rfloor\\}$, and let $I(G)$ denote the edge ideal in the polynomial ring $R=\\mathbb{K}[x_0, x_1, \\dots, x_{n-1}]$ over a field $\\mathbb{K}$. In this paper, we compute the $\\mathbb{N}$-graded Betti numbers of the edge ideals of three families of circulant graphs $C_n(1,2,\\dots,\\widehat{j},\\dots,\\lfloor \\frac{n}{2} \\rfloor)$, $C_{lm}(1,2,\\dots,\\widehat{2l},\\dots, \\widehat{3l},\\dots,\\lfloor \\frac{lm}{2} \\rfloor)$ and $C_{lm}(1,2,\\dots,\\widehat{l},\\dots,\\widehat{2l},\\dots, \\widehat{3l},\\dots,\\lfloor \\frac{lm}{2} \\rfloor)$. Other algebraic and combinatorial properties like regularity, projective dimension, induced matching number and when such graphs are well-covered, Cohen-Macaulay, Sequentially Cohen-Macaulay, Buchsbaum and $S_2$ are also discussed.", "revisions": [ { "version": "v1", "updated": "2020-07-05T18:02:03.000Z" } ], "analyses": { "subjects": [ "13F55", "13H10", "05C75", "05E45" ], "keywords": [ "graded betti numbers", "circulant graph", "edge ideal", "cohen-macaulay", "combinatorial properties" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }