{ "id": "2007.02059", "version": "v1", "published": "2020-07-04T10:01:44.000Z", "updated": "2020-07-04T10:01:44.000Z", "title": "Gallai-Ramsey numbers for monochromatic $K_4^{+}$ or $K_{3}$", "authors": [ "Xueli Su", "Yan Liu" ], "comment": "18 pages", "categories": [ "math.CO" ], "abstract": "A Gallai $k$-coloring is a $k$-edge coloring of a complete graph in which there are no rainbow triangles. For two given graphs $H, G$ and two positive integers $k,s$ with that $s\\leq k$, the $k$-colored Gallai-Ramsey number $gr_{k}(K_{3}: s\\cdot H,~ (k-s)\\cdot G)$ is the minimum integer $n$ such that every Gallai $k$-colored $K_{n}$ contains a monochromatic copy of $H$ colored by one of the first $s$ colors or a monochromatic copy of $G$ colored by one of the remaining $k-s$ colors. In this paper, we determine the value of Gallai-Ramsey number in the case that $H=K_{4}^{+}$ and $G=K_{3}$. Thus the Gallai-Ramsey number $gr_{k}(K_{3}: K_{4}^{+})$ is obtained.", "revisions": [ { "version": "v1", "updated": "2020-07-04T10:01:44.000Z" } ], "analyses": { "keywords": [ "monochromatic copy", "rainbow triangles", "colored gallai-ramsey number", "complete graph", "minimum integer" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }