{ "id": "2007.02001", "version": "v1", "published": "2020-07-01T07:50:51.000Z", "updated": "2020-07-01T07:50:51.000Z", "title": "Fixed point theorems and convergence theorems for a generalized nonexpansive mapping in uniformly convex Banach spaces", "authors": [ "Chang Il Rim", "Jong Gyong Kim" ], "comment": "10 pages, 1 figure, 1 table", "categories": [ "math.FA", "math.AP" ], "abstract": "In this paper, we prove the existence of fixed points of mappings satisfying the condition (Da), a kind of generalized nonexpansive mappings, on a weakly compact convex subset in a Banach space satisfying Opial's condition. And we use Sahu([6]) and Thakur([10])'s iterative scheme to establish several convergence theorems in uniformly convex Banach spaces and give an example to show that this scheme converges faster than the scheme in [1]", "revisions": [ { "version": "v1", "updated": "2020-07-01T07:50:51.000Z" } ], "analyses": { "subjects": [ "47H09", "47H10", "26A18" ], "keywords": [ "uniformly convex banach spaces", "fixed point theorems", "generalized nonexpansive mapping", "convergence theorems", "banach space satisfying opials condition" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }