{ "id": "2007.01749", "version": "v1", "published": "2020-07-03T15:14:17.000Z", "updated": "2020-07-03T15:14:17.000Z", "title": "A user's guide to the local arithmetic of hyperelliptic curves", "authors": [ "Alex J. Best", "L. Alexander Betts", "Matthew Bisatt", "Raymond van Bommel", "Vladimir Dokchitser", "Omri Faraggi", "Sabrina Kunzweiler", "Céline Maistret", "Adam Morgan", "Simone Muselli", "Sarah Nowell" ], "comment": "38 pages", "categories": [ "math.NT" ], "abstract": "A new approach has been recently developed to study the arithmetic of hyperelliptic curves $y^2=f(x)$ over local fields of odd residue characteristic via combinatorial data associated to the roots of $f$. Since its introduction, numerous papers have used this machinery of \"cluster pictures\" to compute a plethora of arithmetic invariants associated to these curves. The purpose of this user's guide is to summarise and centralise all of these results in a self-contained fashion, complemented by an abundance of examples.", "revisions": [ { "version": "v1", "updated": "2020-07-03T15:14:17.000Z" } ], "analyses": { "subjects": [ "11G20", "11G10", "14D10", "14G20", "14H45", "14Q05" ], "keywords": [ "hyperelliptic curves", "users guide", "local arithmetic", "odd residue characteristic", "cluster pictures" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }