{ "id": "2007.01119", "version": "v1", "published": "2020-07-02T14:15:15.000Z", "updated": "2020-07-02T14:15:15.000Z", "title": "Convergence of weighted ergodic averages", "authors": [ "Ahmad Darwiche", "Dominique Schneider" ], "categories": [ "math.DS" ], "abstract": "Let $(X, \\mathcal{A},\\mu)$ be a probability space and let $T$ be a contraction on $L^2(\\mu)$. We provide suitable conditions over sequences $(w_k)$, $(u_k)$ and $(A_k)$ in such a way that the weighted ergodic limit $\\lim\\limits_{N\\rightarrow\\infty}\\frac{1}{A_N}\\sum_{k=0}^{N-1} w_k T^{u_k}(f)=0$ $\\mu$-a.e. for any function $f$ in $L^2(\\mu)$. As a consequence of our main theorems, we also deal with the so-called one-sided weighted ergodic Hilbert transforms.", "revisions": [ { "version": "v1", "updated": "2020-07-02T14:15:15.000Z" } ], "analyses": { "keywords": [ "weighted ergodic averages", "convergence", "one-sided weighted ergodic hilbert transforms", "probability space", "weighted ergodic limit" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }