{ "id": "2007.00960", "version": "v1", "published": "2020-07-02T08:33:33.000Z", "updated": "2020-07-02T08:33:33.000Z", "title": "Dynamic asymptotic dimension for actions of virtually cyclic groups", "authors": [ "Massoud Amini", "Kang Li", "Damian Sawicki", "Ali Shakibazadeh" ], "categories": [ "math.DS", "math.GR", "math.OA" ], "abstract": "We show that the dynamic asymptotic dimension of a minimal free action of an infinite virtually cyclic group on a compact Hausdorff space is always one. This extends a well-known result of Guentner, Willett, and Yu for minimal free actions of infinite cyclic groups. Furthermore, the minimality assumption can be replaced by the marker property, and we prove the marker property for all free actions of countable groups on finite dimensional compact Hausdorff spaces, generalising a result of Szabo in the metrisable setting.", "revisions": [ { "version": "v1", "updated": "2020-07-02T08:33:33.000Z" } ], "analyses": { "subjects": [ "37C45", "37B05", "20F69" ], "keywords": [ "dynamic asymptotic dimension", "virtually cyclic group", "minimal free action", "finite dimensional compact hausdorff spaces", "marker property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }