{ "id": "2007.00735", "version": "v1", "published": "2020-07-01T20:26:57.000Z", "updated": "2020-07-01T20:26:57.000Z", "title": "Lower Bound to the Entanglement Entropy of the XXZ Spin Ring", "authors": [ "Christoph Fischbacher", "Ruth Schulte" ], "comment": "40 pages", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We study the free XXZ quantum spin model defined on a ring of size $L$ and show that the bipartite entanglement entropy of eigenstates belonging to the first energy band above the vacuum ground state satisfies a logarithmically corrected area law. Along the way, we show a Combes-Thomas estimate for fiber operators which can also be applied to discrete many-particle Schr\\\"odinger operators on more general translation-invariant graphs.", "revisions": [ { "version": "v1", "updated": "2020-07-01T20:26:57.000Z" } ], "analyses": { "keywords": [ "xxz spin ring", "lower bound", "free xxz quantum spin model", "vacuum ground state satisfies", "bipartite entanglement entropy" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }