{ "id": "2007.00057", "version": "v1", "published": "2020-06-30T18:40:09.000Z", "updated": "2020-06-30T18:40:09.000Z", "title": "Dichotomizing $k$-vertex-critical $H$-free graphs for $H$ of order four", "authors": [ "Ben Cameron", "Chính T. Hoàng", "Joe Sawada" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "For $k \\geq 3$, we prove (i) there is a finite number of $k$-vertex-critical $(P_2+\\ell P_1)$-free graphs and (ii) $k$-vertex-critical $(P_3+P_1)$-free graphs have at most $2k-1$ vertices. Together with previous research, these results imply the following characterization where $H$ is a graph of order four: There is a finite number of $k$-vertex-critical $H$-free graphs for fixed $k \\geq 5$ if and only if $H$ is one of $\\overline{K_4}, P_4, P_2 + 2P_1$, or $P_3 + P_1$. Our results imply the existence of new polynomial-time certifying algorithms for deciding the $k$-colorability of $(P_2+\\ell P_1)$-free graphs for fixed $k$.", "revisions": [ { "version": "v1", "updated": "2020-06-30T18:40:09.000Z" } ], "analyses": { "keywords": [ "free graphs", "vertex-critical", "finite number", "dichotomizing" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }