{ "id": "2006.16196", "version": "v1", "published": "2020-06-29T17:03:37.000Z", "updated": "2020-06-29T17:03:37.000Z", "title": "A bound on the degree of singular vectors for the exceptional Lie superalgebra $E(5,10)$", "authors": [ "Daniele Brilli" ], "comment": "18 pages", "categories": [ "math.RT" ], "abstract": "We use the language of Lie pseudoalgebras to gain information about the representation theory of the simple infinite-dimensional linearly compact Lie superalgebra of exceptional type $E(5,10)$. This technology allows us to prove that the degree of singular vectors in minimal Verma modules is $\\leq 14$. A few technical adjustments allow us to refine the bound, proving that the degree must always be $\\leq 12$ and it is actually, except for a finite number of cases, $\\leq 10$.", "revisions": [ { "version": "v1", "updated": "2020-06-29T17:03:37.000Z" } ], "analyses": { "keywords": [ "exceptional lie superalgebra", "singular vectors", "simple infinite-dimensional linearly compact lie", "infinite-dimensional linearly compact lie superalgebra", "minimal verma modules" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }