{ "id": "2006.15511", "version": "v1", "published": "2020-06-28T05:07:48.000Z", "updated": "2020-06-28T05:07:48.000Z", "title": "3-Divisibility of 9- and 27-Regular Partitions", "authors": [ "Sarma Abinash" ], "categories": [ "math.NT" ], "abstract": "A partition of $n$ is $l$-regular if none of its parts is divisible by $l$. Let $b_l(n)$ denote the number of $l$-regular partitions of $n$. In this paper, using the theory of Hecke eigenforms explored by J.-P. Serre, we establish exact criteria for the $3$-divisibility of $b_9(n)$ and $b_{27}(n)$.", "revisions": [ { "version": "v1", "updated": "2020-06-28T05:07:48.000Z" } ], "analyses": { "keywords": [ "hecke eigenforms", "establish exact criteria", "regular partitions", "divisibility" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }