{ "id": "2006.14415", "version": "v1", "published": "2020-06-25T13:58:48.000Z", "updated": "2020-06-25T13:58:48.000Z", "title": "A counterexample to a conjecture on Schur positivity of chromatic symmetric functions of trees", "authors": [ "Emmanuella Sandratra Rambeloson", "John Shareshian" ], "comment": "3 pages", "categories": [ "math.CO" ], "abstract": "We show that no tree on twenty vertices with maximum degree ten has Schur positive chromatic symmetric function, thereby providing a counterexample to a conjecture from the paper \"Schur and e-positivity of trees and cut vertices\".", "revisions": [ { "version": "v1", "updated": "2020-06-25T13:58:48.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "schur positivity", "conjecture", "counterexample", "schur positive chromatic symmetric function", "maximum degree" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }