{ "id": "2006.13793", "version": "v1", "published": "2020-06-24T15:06:55.000Z", "updated": "2020-06-24T15:06:55.000Z", "title": "Decomposition of Pointwise Finite-Dimensional S^1 Persistence Modules", "authors": [ "Eric J. Hanson", "Job D. Rock" ], "comment": "15 pages, 2 figures, comments welcome!", "categories": [ "math.RT", "math.AT" ], "abstract": "We prove that pointwise finite-dimensional S^1 persistence modules over an arbitrary field decompose uniquely, up to isomorphism, into the direct sum of a bar code and finitely-many Jordan cells. These persistence modules have also been called angle-valued or circular persistence modules. We also show that a pointwise finite-dimensional S^1 persistence module is indecomposable if and only if it is a bar or Jordan cell (a string or a band module, respectively, in the language of representation theory).", "revisions": [ { "version": "v1", "updated": "2020-06-24T15:06:55.000Z" } ], "analyses": { "subjects": [ "16G20", "55N31" ], "keywords": [ "pointwise finite-dimensional", "decomposition", "circular persistence modules", "finitely-many jordan cells", "arbitrary field decompose" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }