{ "id": "2006.13595", "version": "v1", "published": "2020-06-24T10:19:06.000Z", "updated": "2020-06-24T10:19:06.000Z", "title": "On a mixed singular/switching control problem with multiples regimes", "authors": [ "Mark Kelbert", "Harold A. Moreno-Franco" ], "categories": [ "math.OC" ], "abstract": "This paper studies the mixed singular/switching stochastic control problem for a multidimensional diffusion with multiples regimes in a bounded domain. Using probabilistic, partial differential equation (PDE) and penalized techniques, we show that the value function associated with this problem agrees with the solution to a Hamilton-Jacobi-Bellman (HJB) equation. In that way, we see that the regularity of the value function is $\\hol^{0,1}\\cap\\sob^{2,\\infty}_{\\loc}$.", "revisions": [ { "version": "v1", "updated": "2020-06-24T10:19:06.000Z" } ], "analyses": { "subjects": [ "49L99", "93E20", "60G40" ], "keywords": [ "mixed singular/switching control problem", "multiples regimes", "value function", "mixed singular/switching stochastic control problem", "partial differential equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }