{ "id": "2006.13403", "version": "v1", "published": "2020-06-24T00:38:34.000Z", "updated": "2020-06-24T00:38:34.000Z", "title": "The weighted Hardy inequality and self-adjointness of symmetric diffusion operators", "authors": [ "Derek W. Robinson" ], "categories": [ "math.FA" ], "abstract": "Let $\\Omega$ be a domain in $\\Ri^d$ with boundary $\\Gamma$${\\!,}$ $d_\\Gamma$ the Euclidean distance to the boundary and $H=-\\divv(C\\,\\nabla)$ an elliptic operator with $C=(\\,c_{kl}\\,)>0$ where $c_{kl}=c_{lk}$ are real, bounded, Lipschitz functions. We assume that $C\\sim c\\,d_\\Gamma^{\\,\\delta}$ as $d_\\Gamma\\to0$ in the sense of asymptotic analysis where $c$ is a strictly positive, bounded, Lipschitz function and $\\delta\\geq0$. We also assume that there is an $r>0$ and a $ b_{\\delta,r}>0$ such that the weighted Hardy inequality \\[ \\int_{\\Gamma_{\\!\\!r}} d_\\Gamma^{\\,\\delta}\\,|\\nabla \\psi|^2\\geq b_{\\delta,r}^{\\,2}\\int_{\\Gamma_{\\!\\!r}} d_\\Gamma^{\\,\\delta-2}\\,| \\psi|^2 \\] is valid for all $\\psi\\in C_c^\\infty(\\Gamma_{\\!\\!r})$ where $\\Gamma_{\\!\\!r}=\\{x\\in\\Omega: d_\\Gamma(x)