{ "id": "2006.13356", "version": "v1", "published": "2020-06-23T22:04:13.000Z", "updated": "2020-06-23T22:04:13.000Z", "title": "A note on the natural density of product sets", "authors": [ "Sandro Bettin", "Dimitris Koukoulopoulos", "Carlo Sanna" ], "comment": "6 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Given two sets of natural numbers $\\mathcal{A}$ and $\\mathcal{B}$ of natural density $1$ we prove that their product set $\\mathcal{A}\\cdot \\mathcal{B}:=\\{ab:a\\in\\mathcal{A},\\,b\\in\\mathcal{B}\\}$ also has natural density $1$. On the other hand, for any $\\varepsilon>0$, we show there are sets $\\mathcal{A}$ of density $>1-\\varepsilon$ for which the product set $\\mathcal{A}\\cdot\\mathcal{A}$ has density $<\\varepsilon$. This answers two questions of Hegyv\\'{a}ri, Hennecart and Pach.", "revisions": [ { "version": "v1", "updated": "2020-06-23T22:04:13.000Z" } ], "analyses": { "keywords": [ "product set", "natural density", "natural numbers" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }