{ "id": "2006.13021", "version": "v1", "published": "2020-06-20T19:19:24.000Z", "updated": "2020-06-20T19:19:24.000Z", "title": "Geometric Properties of some Banach Algebras related to the Fourier algebra on Locally Compact Groups", "authors": [ "Edmond Granirer" ], "comment": "10 pages. arXiv admin note: substantial text overlap with arXiv:1703.08253", "categories": [ "math.FA" ], "abstract": "Let $A_p(G)$ denote the Figa-Talamanca-Herz Banach Algebra of the locally compact group}} $G$, thus $A_2(G)$ {\\it{is the Fourier Algebra of $G$. If $G$ is commutative then $A_2(G)=L^1(\\hat{G})^\\wedge$. Let $A_p^r(G)=A_p\\cap L^r(G)$ with norm $\\|u\\|_{A_p^r}=\\| u\\|_{A_p}+\\| u\\|_{L^r}$.We investigate for which $p$, $r$, and $G$ do the Banach algebras $A_p^r(G)$ {\\it{have the Banach space geometric properties: The Radon-Nikodym Property (RNP), the Schur Property (SP) or the Dunford-Pettis Property (DPP). The results are new even if $G=R$ (the real line) or $G=Z$ (the additive integers).", "revisions": [ { "version": "v1", "updated": "2020-06-20T19:19:24.000Z" } ], "analyses": { "keywords": [ "locally compact group", "fourier algebra", "banach space geometric properties", "figa-talamanca-herz banach algebra", "radon-nikodym property" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }