{ "id": "2006.12985", "version": "v1", "published": "2020-06-20T06:23:36.000Z", "updated": "2020-06-20T06:23:36.000Z", "title": "The Boundedness of General Alternative Gaussian Singular Integrals on variable Lebesgue spaces with Gaussian measure", "authors": [ "Eduard Nava", "Ebner Pineda", "Wilfredo Urbina" ], "comment": "arXiv admin note: text overlap with arXiv:1911.06375", "categories": [ "math.CA" ], "abstract": "In a previous paper, we introduced a new class of Gaussian singular integrals, that we called the general alternative Gaussian singular integrals and study the boundedness of them on $L^p(\\gamma_d)$, $ 1 < p < \\infty.$ In this paper, we study the boundedness of those operators on Gaussian variable Lebesgue spaces under a certain additional condition of regularity on $p(\\cdot)$ following a paper by E. Dalmasso and R. Scotto.", "revisions": [ { "version": "v1", "updated": "2020-06-20T06:23:36.000Z" } ], "analyses": { "subjects": [ "42B25", "42B35", "46E30", "47G10" ], "keywords": [ "general alternative gaussian singular integrals", "variable lebesgue spaces", "gaussian measure", "boundedness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }