{ "id": "2006.12869", "version": "v1", "published": "2020-06-23T10:04:26.000Z", "updated": "2020-06-23T10:04:26.000Z", "title": "Minimally critical endomorphisms of P^N", "authors": [ "Patrick Ingram" ], "categories": [ "math.NT", "math.DS" ], "abstract": "We study the dynamics of the map endomorphism of N-dimensional projective space defined by f(X)=AX^d, where A is a matrix and d is at least 2. When d>N^2+N+1, we show that the critical height of such a morphism is comparable to its height in moduli space, confirming a case of a natural generalization of a conjecture of Silverman.", "revisions": [ { "version": "v1", "updated": "2020-06-23T10:04:26.000Z" } ], "analyses": { "keywords": [ "minimally critical endomorphisms", "moduli space", "map endomorphism", "natural generalization", "n-dimensional projective space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }