{ "id": "2006.12602", "version": "v1", "published": "2020-06-22T20:33:51.000Z", "updated": "2020-06-22T20:33:51.000Z", "title": "Analogues of Katona's and Milner's Theorems for two families", "authors": [ "Peter Frankl", "Willie Wong H. W" ], "comment": "14 pages", "categories": [ "math.CO" ], "abstract": "Let $n>s>0$ be integers, $X$ an $n$-element set and $\\mathscr{A}, \\mathscr{B}\\subset 2^X$ two families. If $|A\\cup B|\\le s$ for all $A\\in\\mathscr{A}, B\\in \\mathscr{B}$, then $\\mathscr{A}$ and $\\mathscr{B}$ are called cross $s$-union. Assuming that neither $\\mathscr{A}$ nor $\\mathscr{B}$ is empty, we prove several best possible bounds. In particular, we show that $|\\mathscr{A}|+|\\mathscr{B}|\\le 1+\\sum\\limits_{0\\le i\\le s}{{n}\\choose{i}}$. Supposing $n\\ge 2s$ and $\\mathscr{A},\\mathscr{B}$ are antichains, we show that $|\\mathscr{A}|+|\\mathscr{B}|\\le {{n}\\choose{1}}+{{n}\\choose{s-1}}$ unless $\\mathscr{A}=\\{\\emptyset\\}$ or $\\mathscr{B}=\\{\\emptyset\\}$. An analogous result for three families is established as well.", "revisions": [ { "version": "v1", "updated": "2020-06-22T20:33:51.000Z" } ], "analyses": { "subjects": [ "05D05", "F.2.2" ], "keywords": [ "milners theorems", "element set", "antichains", "analogous result" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }