{ "id": "2006.12546", "version": "v1", "published": "2020-06-16T23:32:23.000Z", "updated": "2020-06-16T23:32:23.000Z", "title": "On the zeros of Dirichlet L-functions", "authors": [ "Tatenda Isaac Kubalalika" ], "comment": "4 pages", "categories": [ "math.NT" ], "abstract": "Let $\\chi$ be a Dirichlet character. Define $\\Theta_\\chi$ to be the supremum of the real parts of the zeros of the corresponding Dirichlet L-function $L(s, \\chi)$. We demonstrate in this note that $\\Theta_{\\chi} < 1$ for all $\\chi$. A particular corollary of our result would be an improved error bound for the Prime Number Theorem for arithmetic progressions.", "revisions": [ { "version": "v1", "updated": "2020-06-16T23:32:23.000Z" } ], "analyses": { "subjects": [ "11M26", "11M06" ], "keywords": [ "prime number theorem", "corresponding dirichlet l-function", "real parts", "dirichlet character", "error bound" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }