{ "id": "2006.11870", "version": "v1", "published": "2020-06-21T18:35:06.000Z", "updated": "2020-06-21T18:35:06.000Z", "title": "Genus fields of Kummer $\\ell^n$-cyclic extensions", "authors": [ "Carlos Daniel Reyes-Morales", "Gabriel Villa-Salvador" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "We give a construction of the genus field for Kummer $\\ell^n$-cyclic extensions of rational congruence function fields, where $\\ell$ is a prime number. First, we compute the genus field of a field contained in a cyclotomic function field, and then for the general case. This generalizes the result obtained by Peng for a Kummer $\\ell$-cyclic extension. Finally, we study the extension $(K_1K_2)_{\\frak{ge}}/(K_1)_{\\frak{ge}}(K_2)_{\\frak{ge}}$, for $K_1$, $K_2$ abelian extensions of $k$.", "revisions": [ { "version": "v1", "updated": "2020-06-21T18:35:06.000Z" } ], "analyses": { "subjects": [ "11R60", "11R29", "11R58" ], "keywords": [ "genus field", "cyclic extension", "rational congruence function fields", "cyclotomic function field", "abelian extensions" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }