{ "id": "2006.11660", "version": "v1", "published": "2020-06-20T21:31:16.000Z", "updated": "2020-06-20T21:31:16.000Z", "title": "Finite groups with some restriction on the vanishing set", "authors": [ "Sesuai Madanha", "Bernardo Rodrigues" ], "comment": "9 pages", "categories": [ "math.GR" ], "abstract": "Let $ x $ be an element of a finite group $ G $ and denote the order of $ x $ by $ \\mathrm{ord}(x) $. We consider a finite group $ G $ such that $ \\gcd(\\mathrm{ord}(x),\\mathrm{ord}(y))\\leqslant 2 $ for any two vanishing elements $ x $ and $ y $ contained in distinct conjugacy classes. We show that such a group $ G $ is solvable. When $ G $ with the property above is supersolvable, we show that $ G $ has a normal metabelian $ 2 $-complement.", "revisions": [ { "version": "v1", "updated": "2020-06-20T21:31:16.000Z" } ], "analyses": { "subjects": [ "20C15" ], "keywords": [ "finite group", "vanishing set", "restriction", "distinct conjugacy classes", "normal metabelian" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }