{ "id": "2006.11046", "version": "v1", "published": "2020-06-19T10:03:02.000Z", "updated": "2020-06-19T10:03:02.000Z", "title": "The precise representative for the gradient of the Riesz potential of a finite measure", "authors": [ "Julià Cufí", "Augusto C. Ponce", "Joan Verdera" ], "categories": [ "math.CA", "math.FA" ], "abstract": "Given a finite nonnegative Borel measure $m$ in $\\mathbb{R}^{d}$, we identify the Lebesgue set $\\mathcal{L}(V_{s}) \\subset \\mathbb{R}^{d}$ of the vector-valued function $$V_{s}(x) = \\int_{\\mathbb{R}^{d}}\\frac{x - y}{|x - y|^{s + 1}} \\mathrm{d}m(y), $$ for any order $0 < s < d$. We prove that $a \\in \\mathcal{L}(V_{s})$ if and only if the integral above has a principal value at $a$ and $$\\lim_{r \\to 0}{\\frac{m(B_{r}(a))}{r^{s}}} = 0.$$ In that case, the precise representative of $V_{s}$ at $a$ coincides with the principal value of the integral.", "revisions": [ { "version": "v1", "updated": "2020-06-19T10:03:02.000Z" } ], "analyses": { "subjects": [ "31B15", "26B05" ], "keywords": [ "finite measure", "precise representative", "riesz potential", "principal value", "finite nonnegative borel measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }