{ "id": "2006.10815", "version": "v1", "published": "2020-06-18T19:11:54.000Z", "updated": "2020-06-18T19:11:54.000Z", "title": "Automatically Learning Compact Quality-aware Surrogates for Optimization Problems", "authors": [ "Kai Wang", "Bryan Wilder", "Andrew Perrault", "Milind Tambe" ], "categories": [ "cs.LG", "stat.ML" ], "abstract": "Solving optimization problems with unknown parameters often requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values. Recent work has shown that including the optimization problem as a layer in the model training pipeline results in predictions of the unobserved parameters that lead to higher decision quality. Unfortunately, this process comes at a large computational cost because the optimization problem must be solved and differentiated through in each training iteration; furthermore, it may also sometimes fail to improve solution quality due to non-smoothness issues that arise when training through a complex optimization layer. To address these shortcomings, we learn a low-dimensional surrogate model of a large optimization problem by representing the feasible space in terms of meta-variables, each of which is a linear combination of the original variables. By training a low-dimensional surrogate model end-to-end, and jointly with the predictive model, we achieve: i) a large reduction in training and inference time; and ii) improved performance by focusing attention on the more important variables in the optimization and learning in a smoother space. Empirically, we demonstrate these improvements on a non-convex adversary modeling task, a submodular recommendation task and a convex portfolio optimization task.", "revisions": [ { "version": "v1", "updated": "2020-06-18T19:11:54.000Z" } ], "analyses": { "keywords": [ "automatically learning compact quality-aware surrogates", "optimization problem", "low-dimensional surrogate model end-to-end", "unknown parameters", "convex portfolio optimization task" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }