{ "id": "2006.09907", "version": "v1", "published": "2020-06-17T14:41:56.000Z", "updated": "2020-06-17T14:41:56.000Z", "title": "Extremal transitions via quantum Serre duality", "authors": [ "Rongxiao Mi", "Mark Shoemaker" ], "comment": "53 pages, comments welcome", "categories": [ "math.AG" ], "abstract": "Two varieties $Z$ and $\\widetilde Z$ are said to be related by extremal transition if there exists a degeneration from $Z$ to a singular variety $\\overline Z$ and a crepant resolution $\\widetilde Z \\to \\overline Z$. In this paper we compare the genus-zero Gromov--Witten theory of toric hypersurfaces related by extremal transitions arising from toric blow-up. We show that the quantum $D$-module of $\\widetilde Z$, after analytic continuation and restriction of a parameter, recovers the quantum $D$-module of $Z$. The proof provides a geometric explanation for both the analytic continuation and restriction parameter appearing in the theorem.", "revisions": [ { "version": "v1", "updated": "2020-06-17T14:41:56.000Z" } ], "analyses": { "subjects": [ "14N35", "14E16", "53D45" ], "keywords": [ "quantum serre duality", "extremal transition", "analytic continuation", "genus-zero gromov-witten theory", "singular variety" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable" } } }