{ "id": "2006.09832", "version": "v1", "published": "2020-06-16T14:59:35.000Z", "updated": "2020-06-16T14:59:35.000Z", "title": "Nets of standard subspaces on Lie groups", "authors": [ "Karl-Hermann Neeb", "Gestur Olafsson" ], "comment": "50 pages", "categories": [ "math-ph", "math.MP", "math.OA", "math.RT" ], "abstract": "Let G be a Lie group with Lie algebra $\\mathfrak{g}$, $h \\in \\frak{g}$ an element for which the derivation ad(h) defines a 3-grading of $\\mathfrak{g}$ and $\\tau_G$ an involutive automorphism of G inducing on $\\mathfrak{g}$ the involution $e^{\\pi i ad(h)}$. We consider antiunitary representations $U$ of the Lie group $G_\\tau = G \\rtimes \\{e,\\tau_G\\}$ for which the positive cone $C_U = \\{ x \\in \\mathfrak{g} : -i \\partial U(x) \\geq 0\\}$ and $h$ span $\\mathfrak{g}$. To a real subspace E of distribution vectors invariant under $exp(\\mathbb{R} h)$ and an open subset $O \\subseteq G$, we associate the real subspace $H_E(O) \\subseteq H$, generated by the subspaces $U(\\varphi)E$, where $\\varphi \\in C^\\infty_c(O,\\mathbb{R})$ is a real-valued test function on $O$. Then $H_E(O)$ is dense in $H_E(G)$ for every non-empty open subset $O \\subseteq G$ (Reeh--Schlider property). For the real standard subspace $V \\subseteq H$, for which $J_V = U(\\tau_G)$ is the modular conjugation and $\\Delta_V^{-it/2\\pi} = U(\\exp th)$ is the modular group, we obtain sufficient conditions to be of the form $H_E(S)$ for an open subsemigroup $S \\subseteq G$. If $\\mathfrak{g}$ is semisimple with simple hermitian ideals of tube type, we verify these criteria and obtain nets of standard subspacs $H_E(O)$, $O \\subseteq G$, satisfying the Bisognano--Wichman property. Our construction also yields such nets on simple Jordan space-times and compactly causal symmetric spaces of Cayley type. By second quantization, these nets lead to free quantum fields in the sense of Haag--Kastler on causal homogeneous spaces whose groups are generated by modular groups and conjugations.", "revisions": [ { "version": "v1", "updated": "2020-06-16T14:59:35.000Z" } ], "analyses": { "subjects": [ "22E45", "81R05", "81T05" ], "keywords": [ "lie group", "modular group", "real subspace", "free quantum fields", "distribution vectors invariant" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }