{ "id": "2006.09697", "version": "v1", "published": "2020-06-17T07:51:16.000Z", "updated": "2020-06-17T07:51:16.000Z", "title": "Longest and shortest cycles in random planar graphs", "authors": [ "Mihyun Kang", "Michael Missethan" ], "categories": [ "math.CO" ], "abstract": "Let $P(n,m)$ be a graph chosen uniformly at random from the class of all planar graphs on vertex set $\\{1, \\ldots, n\\}$ with $m=m(n)$ edges. We study the cycle and block structure of $P(n,m)$ when $m\\sim n/2$. More precisely, we determine the asymptotic order of the length of the longest and shortest cycle in $P(n,m)$ in the critical range when $m=n/2+o(n)$. In addition, we describe the block structure of $P(n,m)$ in the weakly supercritical regime when $n^{2/3}\\ll m-n/2\\ll n$.", "revisions": [ { "version": "v1", "updated": "2020-06-17T07:51:16.000Z" } ], "analyses": { "keywords": [ "random planar graphs", "shortest cycle", "block structure", "vertex set", "asymptotic order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }