{ "id": "2006.09408", "version": "v1", "published": "2020-06-16T18:00:31.000Z", "updated": "2020-06-16T18:00:31.000Z", "title": "The coalgebraic enrichment of algebras in higher categories", "authors": [ "Maximilien Péroux" ], "comment": "9 pages", "categories": [ "math.AT", "math.CT" ], "abstract": "We prove that given $\\mathcal{C}$ a presentably symmetric monoidal $\\infty$-category, and any essentially small $\\infty$-operad $\\mathcal{O}$, the $\\infty$-category of $\\mathcal{O}$-algebras in $\\mathcal{C}$ is enriched, tensored and cotensored over the presentably symmetric monoidal $\\infty$-category of $\\mathcal{O}$-coalgebras in $\\mathcal{C}$. We provide a higher categorical analogue of the universal measuring coalgebra. For categories in the usual sense, the result was proved by Hyland, L\\'{o}pez Franco, and Vasilakopoulou.", "revisions": [ { "version": "v1", "updated": "2020-06-16T18:00:31.000Z" } ], "analyses": { "subjects": [ "18D20", "18N70", "16T15" ], "keywords": [ "higher categories", "coalgebraic enrichment", "presentably symmetric monoidal", "higher categorical analogue", "universal measuring coalgebra" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }