{ "id": "2006.09047", "version": "v1", "published": "2020-06-16T10:10:12.000Z", "updated": "2020-06-16T10:10:12.000Z", "title": "Random potentials for Markov processes", "authors": [ "Yuri Kondratiev", "José L. da Silva" ], "comment": "12 pages. arXiv admin note: text overlap with arXiv:2006.07514", "categories": [ "math.PR", "math.FA" ], "abstract": "The paper is devoted to the integral functionals $\\int_0^\\infty f(X_t)\\,{\\mathrm{d}t}$ of Markov processes in $\\X$ in the case $d\\ge 3$. It is established that such functionals can be presented as the integrals $\\int_{\\X} f(y) \\G(x, \\mathrm{d}y, \\omega)$ with vector valued random measure $\\G(x, \\mathrm{d}y, \\omega)$. Some examples such as compound Poisson processes, Brownian motion and diffusions are considered.", "revisions": [ { "version": "v1", "updated": "2020-06-16T10:10:12.000Z" } ], "analyses": { "subjects": [ "47D07", "37P30", "60G22", "47A30" ], "keywords": [ "markov processes", "random potentials", "vector valued random measure", "compound poisson processes", "brownian motion" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }