{ "id": "2006.08451", "version": "v1", "published": "2020-06-15T14:55:58.000Z", "updated": "2020-06-15T14:55:58.000Z", "title": "Symmetry and Isoperimetry for Riemannian Surfaces", "authors": [ "Joseph Ansel Hoisington", "Peter McGrath" ], "comment": "Comments welcome!", "categories": [ "math.DG", "math.AP", "math.CA" ], "abstract": "For a domain $\\Omega$ in a geodesically convex surface, we introduce a scattering energy $\\mathcal{E}(\\Omega)$, which measures the asymmetry of $\\Omega$ by quantifying its incompatibility with an isometric circle action. We prove several sharp quantitative isoperimetric inequalities involving $\\mathcal{E}(\\Omega)$ and characterize the domains with vanishing scattering energy by their convexity and rotational symmetry.", "revisions": [ { "version": "v1", "updated": "2020-06-15T14:55:58.000Z" } ], "analyses": { "subjects": [ "53C45", "53C65", "53C24" ], "keywords": [ "riemannian surfaces", "isoperimetry", "scattering energy", "sharp quantitative isoperimetric inequalities", "isometric circle action" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }