{ "id": "2006.08147", "version": "v1", "published": "2020-06-15T06:02:13.000Z", "updated": "2020-06-15T06:02:13.000Z", "title": "Toeplitz matrices for the study of the fractional Laplacian on a bounded interval", "authors": [ "Philippe Rambour", "Abdellatif Seghier" ], "categories": [ "math.CA", "math.FA", "math.OA" ], "abstract": "Toeplitz matrices for the study of the fractional Laplacian on a bounded interval. In this work we get a deep link between (--$\\Delta$) $\\alpha$ ]0,1[ the fractional Laplacian on the interval ]0, 1[ and T N ($\\Phi$ $\\alpha$) the Toeplitz matrices of symbol $\\Phi$ $\\alpha$ : $\\theta$ $\\rightarrow$ |1 -- e i$\\theta$ | 2$\\alpha$ when N goes to the infinity and for $\\alpha$ $\\in$]0, 1 2 [$\\cup$] 1 2 , 1[. In the second part of the paper we provide a Green function for the fractional equation (--$\\Delta$) $\\alpha$ ]0,1[ ($\\psi$) = f for $\\alpha$ $\\in$]0, 1 2 [ and f a sufficiently smooth function on [0, 1]. The interest is that this Green's function is the same as the Laplacian operator of order 2n, n $\\in$ N. Mathematical Subject Classification (2000) Primary 35S05, 35S10,35S11 ; Secondary 47G30.", "revisions": [ { "version": "v1", "updated": "2020-06-15T06:02:13.000Z" } ], "analyses": { "keywords": [ "fractional laplacian", "toeplitz matrices", "bounded interval", "greens function", "second part" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }