{ "id": "2006.07987", "version": "v1", "published": "2020-06-14T19:25:00.000Z", "updated": "2020-06-14T19:25:00.000Z", "title": "High $\\ell$-torsion rank for class groups over function fields", "authors": [ "Iman Setayesh", "Jacob Tsimerman" ], "comment": "5 pages, comments welcome!", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove that in the function field setting, $\\ell$-torsion in the class groups of quadratic fields can be arbitrarily large. In fact, we explicitly produce a family whose $\\ell$-rank growth matches the growth in the setting of genus theory, which might be best possible. We do this by specifically focusing on the Artin-Schreir curves $y^2=x^q-x$.", "revisions": [ { "version": "v1", "updated": "2020-06-14T19:25:00.000Z" } ], "analyses": { "keywords": [ "class groups", "torsion rank", "rank growth matches", "quadratic fields", "genus theory" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }