{ "id": "2006.07192", "version": "v1", "published": "2020-06-12T13:54:49.000Z", "updated": "2020-06-12T13:54:49.000Z", "title": "Concavity properties of solutions to Robin problems", "authors": [ "Graziano Crasta", "Ilaria FragalĂ " ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "We prove that the Robin ground state and the Robin torsion function are respectively log-concave and $\\frac{1}{2}$-concave on an uniformly convex domain $\\Omega\\subset \\mathbb{R}^N$ of class $\\mathcal{C}^m$, with $[m -\\frac{ N}{2}]\\geq 4$, provided the Robin parameter exceeds a critical threshold. Such threshold depends on $N$, $m$, and on the geometry of $\\Omega$, precisely on the diameter and on the boundary curvatures up to order $m$.", "revisions": [ { "version": "v1", "updated": "2020-06-12T13:54:49.000Z" } ], "analyses": { "subjects": [ "35E10", "35B65", "35J15", "35J25" ], "keywords": [ "robin problems", "concavity properties", "robin ground state", "robin torsion function", "robin parameter exceeds" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }