{ "id": "2006.06575", "version": "v1", "published": "2020-06-11T16:24:30.000Z", "updated": "2020-06-11T16:24:30.000Z", "title": "Normal Reflection Subgroups", "authors": [ "Carlos E. Arreche", "Nathan Williams" ], "comment": "10 pages; to appear in DMTCS Proceedings (Formal Power Series and Algebraic Combinatorics)", "categories": [ "math.CO", "math.RT" ], "abstract": "We study normal reflection subgroups of complex reflection groups. Our point of view leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalized exponents. Our refinement gives a uniform proof and generalization of a recent theorem of the second author.", "revisions": [ { "version": "v1", "updated": "2020-06-11T16:24:30.000Z" } ], "analyses": { "subjects": [ "20F55", "05E10" ], "keywords": [ "study normal reflection subgroups", "complex reflection groups", "refinement", "fixed-space dimension", "linear factors" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }