{ "id": "2006.06440", "version": "v1", "published": "2020-06-11T13:52:38.000Z", "updated": "2020-06-11T13:52:38.000Z", "title": "Some remarks on orthogonality of bounded linear operators", "authors": [ "Anubhab Ray", "Debmalya Sain", "Subhrajit Dey", "Kallol Paul" ], "categories": [ "math.FA" ], "abstract": "We explore the relation between the orthogonality of bounded linear operators in the space of operators and that of elements in the ground space. To be precise, we study if $ T, A \\in \\mathbb{L}(\\mathbb{X}, \\mathbb{Y}) $ satisfy $ T \\bot_B A,$ then whether there exists $ x \\in \\mathbb{X} $ such that $ Tx\\bot_B Ax$ with $ \\|x\\| =1, \\|Tx\\| = \\|T\\|$, where $\\mathbb{X}, \\mathbb{Y} $ are normed linear spaces. In this context, we introduce the notion of Property $ P_n $ for a Banach space and illustrate its connection with orthogonality of a bounded linear operator between Banach spaces. We further study Property $ P_n $ for various polyhedral Banach spaces.", "revisions": [ { "version": "v1", "updated": "2020-06-11T13:52:38.000Z" } ], "analyses": { "subjects": [ "46B20", "47L05" ], "keywords": [ "bounded linear operator", "orthogonality", "polyhedral banach spaces", "normed linear spaces", "ground space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }