{ "id": "2006.05629", "version": "v1", "published": "2020-06-10T03:07:34.000Z", "updated": "2020-06-10T03:07:34.000Z", "title": "The Universal Theory Of The Hyperfinite II$_1$ Factor Is Not Computable", "authors": [ "Isaac Goldbring", "Bradd Hart" ], "categories": [ "math.LO", "math.OA" ], "abstract": "We show that the universal theory of the hyperfinite II$_1$ factor is not computable. The proof uses the recent result that MIP*=RE. Combined with an earlier observation of the authors, this yields a proof that the Connes Embedding Problem has a negative solution that avoids the equivalences with Kirchberg's QWEP Conjecture and Tsirelson's Problem.+", "revisions": [ { "version": "v1", "updated": "2020-06-10T03:07:34.000Z" } ], "analyses": { "subjects": [ "03C66", "03C98", "46L10" ], "keywords": [ "universal theory", "hyperfinite", "computable", "kirchbergs qwep conjecture", "connes embedding problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }